User Based Aggregation for Biterm Topic Model
نویسندگان
چکیده
Biterm Topic Model (BTM) is designed to model the generative process of the word co-occurrence patterns in short texts such as tweets. However, two aspects of BTM may restrict its performance: 1) user individualities are ignored to obtain the corpus level words co-occurrence patterns; and 2) the strong assumptions that two co-occurring words will be assigned the same topic label could not distinguish background words from topical words. In this paper, we propose Twitter-BTM model to address those issues by considering user level personalization in BTM. Firstly, we use user based biterms aggregation to learn user specific topic distribution. Secondly, each user’s preference between background words and topical words is estimated by incorporating a background topic. Experiments on a large-scale real-world Twitter dataset show that Twitter-BTM outperforms several stateof-the-art baselines.
منابع مشابه
A Probabilistic Model for Bursty Topic Discovery in Microblogs
Bursty topics discovery in microblogs is important for people to grasp essential and valuable information. However, the task is challenging since microblog posts are particularly short and noisy. This work develops a novel probabilistic model, namely Bursty Biterm Topic Model (BBTM), to deal with the task. BBTM extends the Biterm Topic Model (BTM) by incorporating the burstiness of biterms as p...
متن کاملCross-Lingual Taxonomy Alignment with Bilingual Biterm Topic Model
As more and more multilingual knowledge becomes available on the Web, knowledge sharing across languages has become an important task to benefit many applications. One of the most crucial kinds of knowledge on the Web is taxonomy, which is used to organize and classify the Web data. To facilitate knowledge sharing across languages, we need to deal with the problem of cross-lingual taxonomy alig...
متن کاملShort Text Feature Enrichment Using Link Analysis on Topic-Keyword Graph
In this paper, we propose a novel feature enrichment method for short text classification based on the link analysis on topic-keyword graph. After topic modeling, we re-rank the keywords distribution extracted by biterm topic model (BTM) to make the topics more salient. Then a topic-keyword graph is constructed and link analysis is conducted. For complement, the K-L divergence is integrated wit...
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملDetecting Concept-level Emotion Cause in Microblogging
In this paper, we propose a Concept-level Emotion Cause Model (CECM), instead of the mere word-level models, to discover causes of microblogging users’ diversified emotions on specific hot event. A modified topic-supervised biterm topic model is utilized in CECM to detect ‘emotion topics’ in event-related tweets, and then context-sensitive topical PageRank is utilized to detect meaningful multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015